
Show Random Pages or
Questions, Least Fill (Quotas)

Scripting Solutions
Additional scripting solutions will be added in the future. Please reach out to Alchemer with
comments and suggestions on solutions you'd like to see via the link here.

Scripting and Other Custom Solutions
We’re always happy to help you debug any documented script that is used as is. That said,
we do not have the resources to write scripts on demand or to debug a customized script.

If you have customization ideas that you haven't figured out how to tackle, we're happy to be
a sounding board for Alchemer features and functionality ideas that might meet your needs.
Beyond this, check out our Professional Services; these folks have the scripting chops to help
you to achieve what you are looking for!

GoalGoal
Show a limited number of random pages (or questions). Use a quota-based Least Fill strategy to
ensure pages (or questions) are presented as evenly as possible.

If you are not using the options below it will be easier to use the Basic Solution.

If you have a license that provides Lua script and will be limiting with 10 or fewer Checkbox
options and collecting 1,000 or fewer responses, it will be easier to use the Least Fill (Query)
Solution (link coming soon).

 Limit based on selections made in a Checkbox question Option Limit based on selections made in a Checkbox question Option Show a limited number of
random follow up pages (or questions) based on selections made in a Checkbox question (which
could be a list of Concepts or Brands). A Prioritization OptionPrioritization Option ensures the respondent will
always be asked about a specific selection if checked (for example: the Brand you're
researching).

 Respondent Condition Option Respondent Condition Option Ensure pages (or questions) are presented evenly to
respondents who fall into one or more Conditions (such as Gender, Race, or Age Bracket). Note
that this is limited as Conditions can quickly generate a large number of Quotas.

See also:See also: Show Random Pages or Questions

Effort:Effort: ✔ ✔ ✔ (mostly adding quotas and page logic)

https://survey.alchemer.com/s3/6067876/Scripted-Solutions-Request-Form
https://www.alchemer.com/programming-services/
https://help.alchemer.com/help/show-random-x-pages-basic
https://help.alchemer.com/help/marketing-survey-solutions-show-random-x-pages

SolutionSolution
This solution fills a Hidden Value ActionHidden Value Action with a list of random name you define using quotas.
 Later pages or questions use this list to determine if they should be shown or hidden based on
whether it contains a specific name or not.

 Step 1: Add Two Hidden Value Actions Step 1: Add Two Hidden Value Actions

(1) Add a new page.

(2) Add a Hidden Value ActionHidden Value Action with the title random-pages-to-showrandom-pages-to-show. . The script will set thisThe script will set this
to ato a list of randomly selected quota names.

(3) Add a second Hidden Value Action with the title quotasquotas. The script will set this to the
quota counts that were found at the time this respondent was taking the survey. This is
useful if you want to understand why a response was presented specific pages.

 Step 2: Add Quotas Step 2: Add Quotas

If one is using the Respondent ConditionCondition Option Option skip this step and see directions for this
option at the end of the article.

The example below use the names A, B, C, D. If one is using other names, ensure they are
short single words that are not a substring of one another (ie: "SPS" and "XSPS" aren't
allowed).

The Quotas mustmust follow the naming convention of fill-Namefill-Name (ie, they must start with "fill-").
 Set each quota to check if random-pages-to-showrandom-pages-to-show "contains" the Name. And set each quota
to Continue collecting responses Continue collecting responses on the Complete ActionsComplete Actions tab.

 Step 3: Add a Webhook Action to get the quotas Step 3: Add a Webhook Action to get the quotas

Add a Webhook ActionWebhook Action to the top of the page added in Step 1 to get the quotas:

1. Choose GETGET MethodMethod

2. Enter the URL below for your data center (US, CA, or EU), updating the highlighted
sections with the survey ID and API Token/Secret

USUS - https://api.alchemer.com/v5/survey/ - https://api.alchemer.com/v5/survey/12345671234567/quotas?/quotas?api_token=***&api_token_secret=***api_token=***&api_token_secret=***

CACA - https://api.alchemer-ca.com/v5/survey/ - https://api.alchemer-ca.com/v5/survey/12345671234567/quotas?/quotas?api_token=***&api_token_secret=***api_token=***&api_token_secret=***
EUEU - https://api.alchemer.eu/v5/survey/ - https://api.alchemer.eu/v5/survey/12345671234567/quotas?/quotas?api_token=***&api_token_secret=***api_token=***&api_token_secret=***

3. Choose Display itDisplay it at the bottom of page for what to do with the returned data.

 Step 4: Add a Javascript Action Step 4: Add a Javascript Action

11.. Add the JavascriptJavascript at the end of this article to the bottom of the page added in Step 1.

22.. Set the highlighted values

 Step 5: Step 5: Add random pages (or questions)Add random pages (or questions)

Add the pages (or questions) to be randomly shown.

Set the Display Logic for each to only show if the random-pages-to-show random-pages-to-show Hidden ValueHidden Value
ActionAction added in Step 1 contains one of the quota Names. The text must match exactly,
including case.

 Step 6: Test Step 6: Test

There's a lot going on hereThere's a lot going on here . Users do this in Preview by selecting Fire ActionsFire Actions. In Chrome
users right-click > choose Inspect > click the Console tabright-click > choose Inspect > click the Console tab . In the test below Alchemer has
both Gender Condition and Aware-of questions. After answering those questions and
clicking Next,Next, the Javascript page finds the quotas based on the ConditionCondition and Aware ofAware of
selections. It then determines which Concepts to show using the PrioritizationPrioritization of any Brand
with an asterisk at the end of it's reporting value (Southwest in this example).

The example below chooses two of four brands and runs a Least Fill separately for Male and
Female respondents.

Above we can see the Console tab displays the reasoning of the Javascript code. In this case
the Condition is FemaleFemale and the Aware ofAware of Concepts are A, B*, DA, B*, D. Users see that three
Quotas were evaluated, but since there are no responses yet all quotas are Zero.

However, because Concept BConcept B has an asterisk in the Aware of Reporting Value, it is PrioritizedPrioritized.
 To prioritize within a Least Fill, the code sets the Brand response count to -1, ensuring it
moves to the start of the Least Fill list. The remaining Concepts are randomly chosen based
on the lowest response counts. In the above example, this results in brand BB and DD being
selected.

To see the quota counts increase, use the Share tab Share tab and create Complete responsesComplete responses. To
quickly test quotas, add Skip/DQ logic at the end of the Javascript page to send respondents
to the Thank You page to not spend time answering the Concept/Brand pages. There may be
a few second delay after completing a response before the Javascript shows the updated
quota counts in the Console window.

 Step 6: Hide the page from Step 1 Step 6: Hide the page from Step 1

When testing is complete hide the page added in Step 1:

11.. Enter sg-hidesg-hide for the page's Layout tab > CSS Class NameLayout tab > CSS Class Name. This class will hide the page.

22.. Uncomment the line at the end of the Javascript that clicks the Next button by removing
the leading backslashes highlighted below:
 //// $("#sg_NextButton").click();$("#sg_NextButton").click();

33.. Note: Do notnot set the page as Auto-Submit, this does not allow the JavascriptJavascript to function.

 Limit based on selections made in a Checkbox question Option Limit based on selections made in a Checkbox question Option (otherwise skip this step) (otherwise skip this step)

11.. Add a Brand Awareness Brand Awareness Checkbox QuestionCheckbox Question to the survey with an option for each Brand.

22.. The Reporting ValuesReporting Values must match the names used for the Quotas later. Set ReportingReporting
ValuesValues to CustomCustom and edit them to ensure they are short, single words and that none is a
substring of another (ie: "SPS" and "XSPS" aren't allowed). Pro tip: simply set the
Reporting Values to letters of the alphabet.

33.. Prioritization OptionPrioritization Option: Add an asteriskasterisk at the end of the Reporting Values (ex: BB** below) to
ensure the Brand is always presented if the respondent is aware of it.

In the Javascript code, uncomment the AWARE_OF_CONCEPTSAWARE_OF_CONCEPTS section and set the merge
code question ID to the Aware of question (to uncomment, remove //// from the start of the line
of code).

 Respondent Condition Option Respondent Condition Option (otherwise skip this step) (otherwise skip this step)

11.. Add one or more Radio Button Radio Button questions, like Gender.

22.. Set the Reporting ValuesReporting Values to CustomCustom and edit them to to be short single words .

Create a Quotauota for each Name / Concept combination. Each quota checks one Condition and
Name to see if it's contained in the random-pages-to-showrandom-pages-to-show added in Step 1. The Quotas follow
the naming format of fill-fill-ConditionCondition--NameName.. If one is using two conditions, use the form fill-fill-
ConditionCondition1-Condition2-Name1-Condition2-Name.

In the Javascript code, uncomment the CONDITIONSCONDITIONS array. Add one or more Condition
question merge codes to the array for the earlier Condition questions. If there is more than
one Condition, the order needs to match the order of the Conditions listed in the Quota
names.

For example: the Quota fill-Male-Black-Afill-Male-Black-A would need the CONDITIONS array to have the
Gender merge code first and the Race merge code second:

 CONDITIONS = [
 `[question("value"), id="2"]`, // gender question merge code
 `[question("value"), id="3"]`, // race question merge code
]

Code to add toCode to add to Javascript Action Javascript Action

/* Alchemer v02

 Determine concepts to show based on Least Fill. Uses quotas returned from
 the Webhook Action to get current count of completed surveys.

 Different quotas are applied for the respondent's Condition. The Condition is
 how the respondent answered a question, like Gender.

 Documentation and updates: https://help.alchemer.com/help/least-fill-quotas
*/

document.addEventListener("DOMContentLoaded", function() {

 // how many pages (questions) to show
 const NUM_TO_SHOW = 2

 // QID to save the vertical-bar-separated list of Names to show
 const SAVE_TO_QID = 129

 // QID to save what the quotas looked like to this response (so we can audit that that the javascript choice made sense)
 const CURRENT_QUOTAS_QID = 130

 // Array of the Reporting Values of the "Aware of Brands" checkbox
 let AWARE_OF_CONCEPTS = []

 // Checkbox is on an earlier page
 // AWARE_OF_CONCEPTS = `[question("value"), id="134"]`.split(',')

https://help.alchemer.com/help/adding-javascript-to-your-survey

 // Checkbox is on this page and is based on logic from questions earlier in the survey
 // Contains a pre-checked 'do not delete' element to ensure it isn't confused for the default empty array
 // AWARE_OF_CONCEPTS = 134

 // Quota names are in the form 'fill-[CONDITION-[CONDITION-]]CONCEPT'
 // where the CONDITIONS are optional.
 let CONDITIONS = []
 //CONDITIONS = [
 // `[question("value"), id="2"]`,
 //]

 // * * * * * * * * * * * * * *
 // * no changes needed below *
 // * * * * * * * * * * * * * *

 const LOG = true

 /**
 * Helper to display error dialog and throw new Error
 */
 const assert = (bool, msg) => {
 if (!bool)
 throw new Error(msg)
 }

 /**
 * Helper: Get a SurveyGizmo element on the page.
 * Ex: In survey 1234567 on page ID 12 the call getSgId(123, "element")
 * returns HTML element for "sgE-1234567-12-123-element"
 */
 function getElemByQid(qid, oid = "element") {
 let surveyInfo = SGAPI.surveyData[Object.keys(SGAPI.surveyData)[0]]
 let id = "sgE-" + surveyInfo.id + "-" + surveyInfo.currentpage + "-" + qid + "-" + oid
 let elem = document.getElementById(id)
 assert(elem, "Javascript error: can't find element with id = " + id)
 return elem
 }

 /***
 * Get the reporting values for the CHECKED options of
 * a radio button or checkbox QID.
 *
 * qid (int / string) question ID
 * return (array of string) array of reporting values
 */
 const getCheckedByQid = (qid) => {
 const checkedElems = getElemByQid(qid, "box").querySelectorAll('.sg-question-options input:checked')
 if (LOG) console.log("checkedElems = ", checkedElems)
 const checkedOptionIDs = [...checkedElems].map(elem => elem.value)
 // get object that maps optionID to reporting value, ex: { "10014": "reporting value1", "10015": "value2"}
 const optionsObj = SGAPI.survey.surveyObject.questions[qid].options
 // map the object array to array of just the reporting values
 const checkedReportingValues = checkedOptionIDs.map(optionId => optionsObj[optionId].value)
 if (LOG) console.log("checkedReportingValues = ", checkedReportingValues)
 return checkedReportingValues
 }

 /***
 * Sort two strings in alpha order
 */

 */
 const alphaSortFn = (a, b) => a.localeCompare(b)

 /***
 * Parse all quotas from webhook call.
 *
 * return {quota array} quota object format:
 {
 "id": "2600",
 "name": "fill-Male-A",
 "description": "",
 "responses": "0",
 "limit": "100",
 "distributed": "false"
 }
 */
 const getAllQuotas = () => {

 // get JSON from webhook call
 const quotasJSON = document.querySelector('.sg-http-content').innerText

 // test
 if (!quotasJSON)
 throw new Error("getAllQuotas(), no .sg-http-content")

 // parse webhook response
 const parsed = JSON.parse(quotasJSON)

 // test
 if (!parsed.result_ok === "ok")
 throw new Error("getAllQuotas(), result not ok: " + parsed)
 if (LOG) console.log("getAllQuotas() = ", parsed.quotas)
 if (!parsed.quotas)
 throw new Error("no quotas")

 return parsed.quotas
 }

 /**
 * Shuffle / randomize an array in place
 *
 * array {array} - array is mutated
 * return {array} - shuffled array
 */
 function shuffle(array) {

 // Knuth shuffle (https://stackoverflow.com/questions/2450954/how-to-randomize-shuffle-a-javascript-array)

 var currentIndex = array.length, temporaryValue, randomIndex;

 // While there remain elements to shuffle...
 while (0 !== currentIndex) {

 // Pick a remaining element...
 randomIndex = Math.floor(Math.random() * currentIndex);

 randomIndex = Math.floor(Math.random() * currentIndex);
 currentIndex -= 1;

 // And swap it with the current element.
 temporaryValue = array[currentIndex];
 array[currentIndex] = array[randomIndex];
 array[randomIndex] = temporaryValue;
 }

 return array;
 }

 /**
 * Parse the Concept name from a quota
 *
 * quota {quota object}
 * return {string} - The Concept name from the end of the quota.name
 */
 const parseConceptFromQuota = quota => {
 const concept = quota.name.substring(quota.name.lastIndexOf('-') + 1)
 if (!concept) {
 console.log("parseConceptFromQuota() couldn't parse quota: ", quota)
 throw new Error("parseConceptFromQuota() couldn't parse quota.name: " + quota.name)
 }
 return concept
 }

 /***
 * Get the specific quotas that apply to respondent's Condition.
 *
 * conditions {array of string} Optional Condition(s) selected by respondent. Quotas are
 * named 'fill-CONDITION-[CONDITION-]CONCEPT'.
 * awareOfConcepts {array of string} Optional Concepts selected in previous checkbox question
 * of which Concepts/Brands respondent is aware of
 * return {quota array} quotas that match the respondent's Conditon(s)
 */
 const getConceptQuotas = (conditions, awareOfConcepts) => {

 let conceptQuotas = getAllQuotas().filter(quota => quota.name.startsWith(`fill-`))

 // filter Concepts if using Condition(s)
 if (conditions.length) {
 // Create string of Condition Reporting Values, ex: "Female-Black" or empty string if Conditions aren't being used
 let conditionsString = conditions.join('-')
 if (LOG) console.log("getConceptQuotas(), conditionsString = ", conditionsString)
 conceptQuotas = conceptQuotas.filter(quota => quota.name.startsWith(`fill-${conditionsString}`))
 }

 // filter Concepts if using an "Aware of" checkbox
 if (awareOfConcepts.length) {
 if (LOG) console.log("getConceptQuotas(), awareOfConcepts = ", awareOfConcepts)
 conceptQuotas = conceptQuotas.filter(quota => {
 return awareOfConcepts.find(s => s.replace('*', '') == parseConceptFromQuota(quota))
 })

 // Prioritize Concepts if they have an asterisk at the end of their Aware of Reporting Value.
 // To do this set the quota response count to "-1" so it'll be sorted to the front.

 // To do this set the quota response count to "-1" so it'll be sorted to the front.
 conceptQutoas = conceptQuotas.map(quota => {
 if (awareOfConcepts.includes(parseConceptFromQuota(quota) + '*'))
 quota.responses = "-1"
 return quota
 })
 }

 // test
 if (!conceptQuotas)
 throw new Error ("no concept fill quotas " , (conditionsString ? `for condition(s): ${conditionsString}` : ''))

 // log
 if (LOG) {
 console.log("conceptQuotas = ")
 console.log(
 conceptQuotas.map((quota) => ` ${quota.name} - ${quota.responses}`)
 .sort(alphaSortFn)
 .join('\n'))
 }

 return conceptQuotas
 }

 /**
 * Get vertical bar-separated list of Concepts to show (Ex: 'B|D')
 *
 * conceptQuotas_leastFirst {quota array} array is sorted with Least First, so pull from from of array
 * numToShow {int} how many concepts to show
 * return {string} with vertical bar-separated list of Concept names to show
 */
 const getConceptsToShow = (conceptQuotas_leastFirst, numToShow) => {
 let toShow = []
 for (let i = 0; i < numToShow && i < conceptQuotas_leastFirst.length; i++) {
 // Assumes the quota names are in the form 'fill-CONDITION-CONCEPT'.
 toShow.push(parseConceptFromQuota(conceptQuotas_leastFirst[i]))
 }
 toShow = toShow.sort(alphaSortFn)
 if (LOG) console.log(`toShow = \n ${toShow.join('\n ')}`)
 return toShow.join('|')
 }

 /**
 * main()
 */
 try {

 // AWARE_OF_CONCEPTS is one of:
 // - empty array
 // - array of string from a checkbox on a previous
 // - QID for a checkbox on this page on this page pre-checked and using display
 // logic based on previous questions
 let awareOfConcepts = AWARE_OF_CONCEPTS
 if (!Array.isArray(AWARE_OF_CONCEPTS)) {
 awareOfConcepts = getCheckedByQid(AWARE_OF_CONCEPTS)
 }

 }

 // get the quotas specific to respondent's Conditions and Aware-of choices
 let conceptQuotas = getConceptQuotas(CONDITIONS, awareOfConcepts)

 // randomize, ensure randomized Concepts selected even if all have the same number of Completes at this time
 conceptQuotas = shuffle(conceptQuotas)

 // sort based on number of responses received for the Concept
 conceptQuotas_leastFirst = conceptQuotas.sort((a,b) => parseInt(a.responses) - parseInt(b.responses))

 // save which concepts to show
 getElemByQid(SAVE_TO_QID).value = getConceptsToShow(conceptQuotas_leastFirst, NUM_TO_SHOW)

 // save the current quotas so we can validate that the code was making the right choices at the time of this response
 if (LOG) console.log(">>> conceptQuotas_leastFirst = ", conceptQuotas_leastFirst)
 getElemByQid(CURRENT_QUOTAS_QID).value = conceptQuotas_leastFirst.map((quota) => ` ${quota.name} - ${quo
ta.responses}`)
 .sort(alphaSortFn)
 .join('\n')
 if (LOG) console.log(">>> getElemByQid(CURRENT_QUOTAS_QID).value = ", getElemByQid(CURRENT_QUOTAS_QI
D).value)

 }
 catch (err) {
 console.error("ERROR,message ", err.message)
 console.error("ERROR ", err)
 alert("Javascript error in catch: " + err.message)
 }

 // move to next page
 $("#sg_NextButton").click();
})

Related Articles

